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Figure 1: End-to-end VR simulation pipeline (center) expanded with EEG (left) and gaze sensing (right).

Abstract

Behavioral agency relies on our ability to observe and mentally
interpret our surroundings. However, interactions between gaze
and brain activity often escape data capture and are difficult to
model, as their dynamics are sensitive to individual differences and
situational context. We examine how immersive virtual reality (VR),
brain-computer interfaces (BCIs), and agent-based models (ABMs)
can combine to overcome these limitations. We show that elec-
troencephalography (EEG), coupled to VR head-mounted displays
(HMDs) and single-board computers (SBCs), can inform simula-
tions of road-crossing with mixtures of real, thinking humans and
synthetic agents.
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1 Introduction

It is important to look around and pay attention when crossing
roads. In streetscapes buzzing with distractors, crossers are likely
to reinforce their spatial perception, e.g. via social cues drawn from
non-verbal communications (NVCs). This raises questions of how
crossers may interpret streetscapes differently due to perspective
and circumstance. Immersive virtual reality (VR) environments
provide opportunities to examine this differentiation, emphasiz-
ing users’ agency in simulations of real-world scenarios [4, 5].
VR head-mounted displays (HMDs) with eye tracking facilitate
analysis of the by-products of this agency, such as gaze dynam-
ics and ray-tracing during gaze fixation. In tandem, mobile brain-
computer interfaces (BCIs) that measure brain activity can offer
novel neuroscience-based interpretations of this explanatory mix.
Here, we aim to (1) couple EEG BCIs to HMDs to (2) support con-
nections between simulation events, user gaze, and brain activity
in (3) an end-to-end pipeline for road-crossing experiments. We
explore this avenue for simulation-assisted knowledge discovery
via (4) an immersive VR simulation with (5) behavioral agent-based
models (ABMs) of pedestrian/crowd and vehicle/traffic agents.

2 Methodology

Progress on aims (4)-(5) was presented at last year’s SIGSIM PADS
[2], which featured an immersive VR-ABM road-crossing simula-
tion in Unity3D with built environment features, Intelligent Driver
Model (IDM) vehicles, and NavMesh pedestrian agents. The system
was validated for fidelity and verisimilitude. Here, as an improve-
ment, we implemented synthetic gaze gestures in new driver agents
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that we placed within vehicles. Driver agents will thus “look” at
users who walk in front of their vehicles and appear to facilitate
eye-to-eye NVC cues between users and drivers. Below, we focus
on enhancements to accomplish aims (1)-(3).

Using an institution-approved human subjects protocol, we re-
cruited six participants to engage the simulation in a set of road-
crossing trials. Participants were embodied in scenarios against a set
of varied traffic congestion presets. Meanwhile, agent-pedestrians
were configured to simulate pedestrian flow along sidewalks and
act as visual distractors. During runtime, we captured participants’
gaze behaviors via the Meta Quest Pro’s (MQP’s) gaze tracking SDK
at 60Hz. While using the HMD, participants also wore InteraXon
Inc.s Muse S headband BCI which records raw EEG signals at 256Hz
along the AF7, AF8, TP9, TP10, and FPz electrodes. We denoised
the raw EEG data through a 60Hz notch filter and transformed the
filtered signals to the log form of power spectral densities (PSDs)
in 0.5sec windows using the Mind Monitor application on a paired
bluetooth phone. Simultaneously, we recorded participants’ visual
field videos with a single-board computer (SBC) consisting of a
wearable Rasberry Pi 4B running Genymobile’s scrcpy. Finally, the
space-time trajectories of participants and all dynamic agents in
the simulation were recorded at approximately 60Hz.

To initialize the system, we recorded participants’ baseline EEG
data during a 30sec “rest” trial. Thereafter, participants were asked
to cross a virtual road with agent-pedestrians, traffic lights, crossing
signals, driving vehicles, and watchful drivers in dynamic simula-
tion. Every time the participant successfully crossed the road, they
were given an audio cue to turn around and cross in the opposite
direction. This pattern continued for a total of 1 acclimation trial
and 8 experimental trials per participant.

3 Results and Discussion

The goal of this paper is to demonstrate that meaningful and action-
able data can be collected through simulations, BCIs, and VR HMDs.
To scaffold this endeavor, we conducted a preliminary exploration
of how these tools can link event-gaze-response dynamics to inter-
pretable explanations of road-crossing behavior. We contextualize
our results across gaze distances (meters) between participants and
their gaze targets as well as crossing offsets (seconds) before partici-
pants start their road-crossing attempts. Illustrations of our findings
are shown in Figure 1.

Our first class of findings unpacks participants’ gaze hits on ve-
hicles. Participants demonstrated an increasing frequency of gaze
fixations on vehicles as participants drew closer (in space and time)
to their crossing attempts. Distinct patterns within this tendency
are evident. Prior to crossing, gaze frequency is greatest for vehicles
that are far away from the participant. This finding corroborates
observations of naturalistic walking in the real world, for which
longer total fixations on vehicles are concentrated within 5-20m [7].
Visual analysis of participants’ gaze tendencies, manually identi-
fied via reviewing gaze footage, indicated that participants observe
drivers more often than they do actual vehicles. Post-experiment
discussions with participants reveal this is because they engaged in
bi-directional gaze transfer between themselves and drivers, relying
on NVC cues to identify whether (1) the driver has noticed them,
as an indicator/check of (2) whether the vehicle will stop.

187

Ryan Kim, Kaishuu Shinozaki-Conefrey, and Paul M. Torrens

Our second class of findings ties gaze phenomena to brain
activity through Spearman correlations between gaze distances,
crossing offsets, and EEG frequency bands. We base our analysis on
the knowledge that Theta frequencies (4-8Hz) are indicative of nav-
igational difficulty [3], Beta frequencies (13-30Hz) are correlated
with corrective submovements during locomotion [1], and Gamma
frequencies (30+Hz) are associated with information processing
[6]. We identified positive, statistically significant correlations be-
tween crossing offsets and Theta, Beta, and Gamma frequencies.
These correlations represent trade-offs in brain activity as partic-
ipants shift from being passive observers — engaging in spatial
understanding, planning, and information processing — to active
crossers. In contrast, we identified negative correlations between
gaze distances and Beta and Gamma frequencies. We reason that
participants demonstrated higher levels of attention and concen-
tration toward closer vehicles in response to the potential threat
of pedestrian-vehicle collisions. These findings were validated by
participants, who remarked that they had to concentrate on ap-
proaching cars due to difficulties in assessing their estimated speed
and whether the drivers “noticed” them on approach.

4 Conclusion

We extend immersive ABM-VR simulations to stream run-time bio-
metric data (user gaze and brain activity). Combined, these modali-
ties of experimentation allow for deep investigation of significance
among events and user behaviors. As a proof of concept, we show an
end-to-end pipeline, running on commercially-available hardware,
that can support experimentation with road-crossing scenarios.
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